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Abstract—Vector wavelet transforms for vector-valued fields can be im-
plemented directly from multiwavelets; however, existing multiwavelets of-
fer surprisingly poor performance for transforms in vector-valued signal-
processing applications. In this paper, the reason for this performance fail-
ure is identified, and a remedy is proposed. A multiwavelet design criterion,
omnidirectional balancing, is introduced to extend to vector transforms the
balancing philosophy previously proposed for multiwavelet-based scalar-
signal expansion. It is shown that the straightforward implementation of
a vector wavelet transform, namely the application of a scalar transform
to each vector component independently, is a special case of an omnidirec-
tionally balanced vector wavelet transform in which filter-coefficient ma-
trices are constrained to be diagonal. Additionally, a family of symmetric-
antisymmetric multiwavelets is designed according to the omnidirectional-
balancing criterion. In empirical results for a vector-field compression
system, it is observed that the performance of vector wavelet transforms
derived from these omnidirectionally-balanced symmetric-antisymmetric
multiwavelets is far superior to that of transforms implemented via other
multiwavelets and can exceed that of diagonal transforms derived from
popular scalar wavelets.

Keywords— Vector wavelet transforms, balanced multiwavelets, vector-
valued signal processing

I. INTRODUCTION

Wavelet transforms have been some of the most useful signal-
processing tools to arise during recent years; however, the over-
whelming majority of wavelet literature focuses on the expan-
sion of scalar-valued signals using scalar wavelet systems, i.e.,
multiresolution analyses consisting of wavelet and scaling func-
tions which are scalar-valued. Yet in many applications, there is
a need to process data that is inherently of vector form. For ex-
ample, fluid flows in oceanography and aerodynamics are usu-
ally represented as 2D or 3D vector fields in 2D or 3D space,
while images with multiple spectral components can be consid-
ered to be 2D fields of multidimensional vectors. These are just
two applications out of many for which there is need of a vector
wavelet transform (VWT).

The concept of a vector transform has existed for some time
[1], and a comprehensive multiresolution-analysis theory for
VWTs, which closely parallels theory for scalar-wavelet expan-
sion, was outlined by Xia and Suter [2]. Although Xia and
Suter focused on the theoretical infrastructure for VWTs rather
than the design of coefficient matrices for vector filter banks,
they recognized that multiwavelets present a natural construc-
tion for VWTs. Since their introduction [3], multiwavelets have
garnered an extraordinary amount of attention from both the-
orists and engineers, but mostly for the expansion of scalar-
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valued signals. By expanding a scalar function using several
scaling functions and wavelet functions instead of a single pair,
multiwavelet-transform systems circumvent certain limitations
posed by traditional scalar wavelets, such as the fact that scalar
wavelets cannot possess simultaneously orthogonality and lin-
ear phase. However, multiwavelets can easily provide expan-
sions for vector-valued signals; in fact, using multiwavelets for
vector-valued processing initially appears simpler in that there is
no need for scalar-to-vector conversion (which usually involves
a polyphase decomposition of the scalar signal and some form
of prefiltering [4]).

Given the discussion above, it appears obvious that the large
body of existing multiwavelet transforms and filters existing in
the literature could be brought to bear directly on the VWT-
design problem. However, we demonstrate below that, con-
trary to expectations, existing multiwavelets perform exceed-
ingly poorly for vector-valued signal-processing applications.
As the primary contribution of this paper, we analyze exten-
sively this performance failure and develop a remedy for it.
Inspired by the work of Lebrun and Vetterli [5], we find that
existing multiwavelets are not suitably “balanced” for vector-
valued sources, and adopt a solution we call omnidirectional
balancing (OB) that greatly improves performance. Employing
our OB design criterion, we solve for a family of biorthogonal,
symmetric-antisymmetric (SA) multiscaling and multiwavelet
functions and corresponding filter banks. Using these OBSA
multiwavelets in a VWT, we obtain performance in a simple
vector-field compression system far superior to that of existing
multiwavelets.

Of course, the most straightforward way to transform vector-
valued data is to apply scalar transforms directly by transform-
ing each vector component individually. We show below that
such a “product” of multiple scalar transforms is tantamount to
an OB VWT with a constrained structure; specifically the filter-
coefficient matrices are constrained to be diagonal. Empirical
results from our vector-field compression system indicate that
our family of biorthogonal OBSA VWTs offers performance
that can exceed that of diagonal VWTs based upon the best per-
forming scalar wavelets.

In the following, we provide a brief overview of VWT theory
and its relation to multiwavelets in Sec. II and examine the bal-
ancing issue for multiwavelets and VWTs in Sec. III. We present
the details of the construction of our OBSA multiwavelets in
Sec. IV and explore their VWT performance in Sec. V. Finally,
we make some concluding remarks in Sec. VI.
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II. VECTOR WAVELET TRANSFORMS

A. Biorthogonal VWT Theory

We now present a brief overview of vector-valued wavelet
theory as presented in [2], suitably generalized to the biorthog-
onal case as employed in [6]. Let R be the set of real numbers
andZ be the set of integers. The real matrix-valued signal space
of dimension N ×N , L2(R,RN×N ), is defined as the set of all
matrix-valued signals, f(t), which are N ×N matrices of scalar
signals; i.e.,

f(t) =




f11(t) f12(t) . . . f1N (t)
f21(t) f22(t) . . . f2N (t)

...
...

...
...

fN1(t) fN2(t) . . . fNN (t)


 , (1)

where the fij(t) are scalar-valued functions, fij(t) ∈ L2(R),
and t ∈ R. The integration of matrix-valued function f(t)
is defined as

∫
f(t) dt =

[∫
fij(t) dt

]
N×N , i.e., the matrix of

the integrals of the scalar functions. The inner product of two
matrix-valued functions, f(t) and g(t), is defined as 〈f ,g〉 =∫
R f(t)gT (t) dt. Note that this is not an inner product in the

common sense in which it must be scalar-valued (〈f ,g〉 is an
N ×N matrix); however, it can be shown [2] to satisfy proper-
ties necessary to be considered to be an inner product for matrix-
valued signal spaces. A set of matrix-valued functions, Φk(t),
k ∈ Z , is orthogonal to set Φ̃l(t) if

〈
Φk(t), Φ̃l(t)

〉
= δ(k − l)I, (2)

where δ(n) is the Kronecker delta sequence, and I is the
N × N identity matrix. The dual sets Φk(t) and Φ̃l(t) are
called a biorthogonal basis if (2) holds, and, for every f(t) ∈
L2(R,RN×N ), there exists coefficient matrices, Fk and F̃k,
such that f(t) =

∑
k FkΦk(t) =

∑
k F̃kΦ̃k(t). Note that the

coefficients in these expansions are N × N matrices; however,
as usual, they can be obtained via inner products, Fk =

〈
f , Φ̃k

〉
,

F̃k =
〈
f ,Φk

〉
.

A biorthogonal multiwavelet multiresolution analysis is
driven by two matrix-valued scaling functions, Φ(t) and Φ̃(t),
and two matrix-valued wavelet functions, Ψ(t) and Ψ̃(t), which
satisfy matrix-valued dilation equations,

Φ(t) =
√

2
∑

n

HnΦ(2t− n), (3)

Φ̃(t) =
√

2
∑

n

H̃nΦ̃(2t− n), (4)

Ψ(t) =
√

2
∑

n

GnΦ(2t− n), (5)

Ψ̃(t) =
√

2
∑

n

G̃nΦ̃(2t− n), (6)

and biorthogonality conditions,
〈
Φj,k, Φ̃j,l

〉
= δ(k − l)I, (7)

〈
Φj,k, Ψ̃i,l

〉
=
〈
Φ̃j,k,Ψi,l

〉
= 0, (8)

〈
Ψj,k, Ψ̃i,l

〉
= δ(i− j)δ(k − l)I, (9)

where the coefficient sequencesHn, H̃n,Gn, and G̃n areN×N
matrices, and the scales and translates are ξj,k(t) = 2j/2ξ(2jt−
k), ξ = Φ, Φ̃,Ψ, Ψ̃. Translates and scales of scaling func-
tions Φ(t) and Φ̃(t) and wavelet functions Ψ(t) and Ψ̃(t) form
a nested sequence of closed subspaces (scaling spaces) and their
orthogonal-complement spaces (wavelet spaces) decomposing
L2(R,RN×N ). Therefore, function f(t) ∈ L2(R,RN×N ) can
be expanded as

f(t) =
∑

k

CJ0,kΦJ0,k(t) +
∞∑

j=J0

∑

k

Dj,kΨj,k(t), (10)

where J0 is an arbitrary “starting scale,” while scaling coeffi-
cients Cj,k and wavelet coefficients Dj,k are N × N matrices.
Matrix filter-bank equations in the style of Mallat’s algorithm
[7], the ubiquitous implementation of scalar discrete wavelet
transforms, can be derived easily [2].

In most cases, we are actually interested in transforming data
consisting of N × 1 vectors rather than N ×N matrices. How-
ever, the theory outlined above can still apply. To see this, define
signal f(t) using N identical copies of a given vector source as

its N rows, f(t) =
[
f̄(t) f̄(t) · · · f̄(t)

]T
. Then, each row

in expansion (10) becomes

f̄T (t) =
∑

k

c̄Tj,kΦJ0,k(t) +
∞∑

j=J0

∑

k

d̄Tj,kΨj,k(t), (11)

where each row of the coefficient matrices Cj,k and Dj,k are
identical and equal to c̄Tj,k and d̄Tj,k, respectively. In this case,
the above theory simplifies since the matrix rows are identical.
Since we do not need to calculate identical rows multiple times,
the matrix-valued form of Mallat’s algorithm (see [2]),

Analysis: Cj,k =
∑

n

Cj+1,nH̃
T
n−2k, (12)

Dj,k =
∑

n

Cj+1,nG̃
T
n−2k, (13)

Synthesis: Cj+1,k =
∑

n

Cj,nHk−2n +
∑

n

Dj,nGk−2n,

(14)

simplifies to

Analysis: c̄j,k =
∑

n

H̃n−2k c̄j+1,n, (15)

d̄j,k =
∑

n

G̃n−2k c̄j+1,n, (16)

Synthesis: c̄j+1,k =
∑

n

HT
k−2nc̄j,n +

∑

n

GTk−2nd̄j,n,

(17)

where c̄ and d̄ are scaling and wavelet coefficient vectors of di-
mension N × 1. We note that an orthonormal VWT is just a
special case of a biorthogonal VWT with H̃n = Hn, G̃n = Gn,
Φ̃ = Φ, and Ψ̃ = Ψ.

IEEE Transactions on Signal Processing, vol. 50, pp. 3018-3027, December 2002.



As a consequence of the above definitions, the matrices
Hn, H̃n, Gn, and G̃n satisfy a matrix version of the perfect-
reconstruction (PR) conditions [6],

∑

n

HnH̃
T
n+2k = δ(k)I, (18)

∑

n

HnG̃
T
n+2k = 0, (19)

∑

n

GnG̃
T
n+2k = δ(k)I, (20)

for k ∈ Z . Finally, we define two-scale matrix symbols as

H(z) =
1√
2

∑

n

Hnz
n, H̃(z) =

1√
2

∑

n

H̃nz
n. (21)

B. Diagonal VWTs from Scalar Wavelets

The most straightforward approach to constructing a
biorthogonal VWT is to directly apply biorthogonal scalar
wavelets, independently, to the individual components of the
vector signal. It is fairly straightforward to see that this trivial
extension of scalar transformation to the vector case is a spe-
cial case of a biorthogonal VWT constrained to have scaling
and wavelet functions which are diagonal matrix-valued func-
tions. That is, if φ(t) is the biorthogonal primary scalar scaling
function used in the expansion of each vector component (as-
sume we use the same scalar transform for each component),
then the corresponding primary vector scaling function is di-
agonal, Φ(t) = diag (φ(t), φ(t), . . . , φ(t)). Ψ(t), Φ̃(t), and
Ψ̃(t) are likewise diagonal. The matrix biorthogonality equa-
tions, (7)-(9), hold due to the biorthogonality of scalar functions
φ(t), φ̃(t), ψ(t), and ψ̃(t). From the dilation equations, (3)-(6),
we see that the Hn, H̃n, Gn, and G̃n matrices are also diago-
nal, and are Hn = diag(hn, . . . , hn), H̃n = diag(h̃n, . . . , h̃n),
Gn = diag(gn, . . . , gn), and G̃n = diag(g̃n, . . . , g̃n), where
hn, h̃n, gn, and g̃n are the scalar filters for the biorthogonal
transform.

C. Multiwavelet Construction of VWTs

Scalar-valued multiwavelet-based multiresolution analysis
consists of scales and translates of a finite number of pri-
mary scaling functions, φ1(t), φ2(t), . . . , φN (t), dual scaling
functions, φ̃1(t), φ̃2(t), . . . , φ̃N (t), primary wavelet functions,
ψ1(t), ψ2(t), . . . , ψN (t) and dual wavelet functions, ψ̃1(t),
ψ̃2(t), . . . , ψ̃N (t). In either the scalar case (a special case of
multiwavelets wherein N = 1), or in the general multiwavelet
case (wherein N > 1), we expand a single scalar-valued func-
tion f(t) ∈ L2(R) using linear combinations of scales and
translates of these scaling and wavelet functions. In contrast, to
construct a VWT, we want to expand vector-valued functions.
However, multiwavelets and VWTs are closely related as was
established in [2]. Specifically, in implementing a VWT with
multiwavelets, each column of matrix-valued scaling functions
Φ(t) and Φ̃(t) contains a set of multiscaling functions, while
each column of the matrix-valued wavelet functions Ψ(t) and
Ψ̃(t) contains a set of multiwavelet functions. The VWT is im-
plemented as in (15)-(17) directly with Hn, H̃n, Gn, and G̃n
being the filter coefficient matrices for the multiwavelet system.

III. MULTIWAVELET BALANCING

A. Scalar Balancing

Using biorthogonal multiwavelet filter-coefficient matrices
Hn, H̃n, Gn, and G̃n in (15)-(17) yields an analysis-synthesis
filter-bank pair with perfect reconstruction for use with vector
sources. Additionally, if we couple this filter bank with a proce-
dure for “vectorizing” a scalar source, these equations also pro-
vide the mechanisms for implementing the forward and inverse
discrete multiwavelet transform (DMWT) of a scalar signal; in
this case, the multi-input, multi-output filter bank is called a
“multifilter” after [8]. The most straightforward way to imple-
ment the required vectorization is to separate the scalar signal
into its N polyphase components.

It is well known that the mere satisfaction of (18)-(20) is not
sufficient to give a DMWT reasonable signal-processing perfor-
mance for scalar signals. That is, even though (18)-(20) pro-
vide perfect reconstruction, the distortions normally introduced
by signal-processing operations between analysis and synthesis
steps of the multifilter can have dramatically detrimental results.

For example, consider a simple compression system for scalar
signals that consists of merely the application of one scale of
DMWT analysis, the zeroing of the high-pass or “detail” co-
efficients (d̄j,k in (16)), and one scale of DMWT synthesis.
Suppose this compression system uses the Geronimo-Hardin-
Massopust (GHM) multiwavelets [3], which are orthogonal and
haveN = 2. Further suppose we employ a polyphase vectoriza-
tion which assembles a vector source by placing even samples
from the scalar source into the first vector component and odd
samples into the second component. If the scalar signal input
to the system is the constant signal [. . . , 1, 1, 1, 1, 1, 1, . . . ], we
would expect that the system would reproduce this signal ex-
actly, since our intuition holds that a constant signal would pass
perfectly through the “lowpass” branch of the multifilter, and,
since we are discarding only highpass coefficients, no change
should result. This is, however, not the case. In reality, the out-
put of the system is [. . . , 1,

√
2, 1,
√

2, 1,
√

2, . . . ], as was ob-
served in [5]. That is, an oscillatory distortion of the scalar con-
stant signal occurs due to the suppression of the detail coeffi-
cients from the multifilter. For many other multiwavelets, a sim-
ilar effect occurs, although the exact values of the oscillations
depend on the multiwavelet used. The problem represented by
this example is serious as it is likely to lead to significant distor-
tions in any system that modifies coefficients between analysis
and synthesis transform steps. This issue is particularly prob-
lematic for those processes, notably compression systems, that
tend to preserve scaling coefficients at the expense of wavelet
coefficients under the assumption that the scaling coefficients
provide a “low-resolution” approximation to the original data.

The traditional approach to handling the oscillatory distor-
tions described above is to compensate for them before the for-
ward DMWT is applied. That is, one applies a so-called “pre-
filter” to the input data before it enters the analysis DMWT fil-
ter bank. The net effect, however, is that the transform itself is
changed, usually losing orthogonality or linear phase [5]. An al-
ternative approach was proposed recently [5]. In this technique,
it was realized that the root of the problem lies in that the vector
[1, 1]T is not generally an eigenvector of the two-scale matrix
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symbols H(z) and H̃(z) of (21) when z = 1 (corresponding to
a zero-frequency, or constant source). To rectify this situation,
a similarity transformation was proposed in order to “redesign”
theHn and H̃n matrices such that [1, 1]T is an eigenvector. This
approach was called multiwavelet balancing [5] due to the fact
that it tends to “balance” out the treatment of the vector compo-
nents by the filter bank.

Specifically, in our formulation of analysis and synthesis,
(15)-(17), the conditions imposed by scalar balancing are that
we want a constant scalar signal to pass through the lowpass
analysis filter unchanged (up to a constant gain). That is, re-
garding (15), we want

∑
n H̃n[1, 1]T =

√
2[1, 1]T . From the

definitions of (21), we have directly that [1, 1]T is a right eigen-
vector of H̃(z) for z = 1. That is,

H̃(1)

[
1
1

]
=

[
1
1

]
. (22)

Additionally, we want a constant signal to pass through
the synthesis filter (17) unchanged up to a gain; i.e.,∑
nH

T
k−2n

√
2[1, 1]T = [1, 1]T , ∀k. Thus, we have that∑

nH
T
2n

√
2[1, 1]T =

∑
nH

T
2n+1

√
2[1, 1]T = [1, 1]T , or equiv-

alently,
∑
nH

T
n

√
2[1, 1]T = 2[1, 1]T . Consequently, we have

that [1, 1] is a left eigenvector of H(z) when z = 1; i.e.,
[
1 1

]
H(1) =

[
1 1

]
. (23)

We note that in the original development of [5], only orthonor-
mal multiwavelets were considered, in which case H̃(z) =
H(z), and (22) and (23) become conditions on the left and right
eigenvectors of H(1).

Initially, it may appear that the balancing issue described
above applies only to the situation in which a scalar source is
processed by first vectorizing it and then applying a DMWT,
since it is in the polyphase nature of the vectorization that the
oscillations arise. However, as we will see in the next section,
purely vector transforms, in which the input data is originally in
vector form so that no vectorization is needed, are not immune
to this effect. In fact, we will see that a new kind of balanc-
ing is needed to rectify the problem, and, in its absence, using
multiwavelets for VWTs produces surprisingly poor results for
compression.

B. Omnidirectional Balancing

The vector analogue of a constant scalar source is a vec-
tor field in which each vector is the same, i.e., f̄(t) =[
a b

]T
, ∀t. Define the orientation of the constant vector

field as θ = tan−1 b
a . From the previous discussion, we would

expect some vector other than
[
a b

]T
to be output from the

“lowpass” branch of the multifilter, unless
[
a b

]
and

[
a b

]T
happen to be a left eigenvector of H(1) and a right eigenvector
of H̃(1), respectively—but we could apply the scalar balancing
to ensure that this is the case. However, doing so would mean
that the resulting multiwavelet is “balanced” only for the spe-
cific constant source at hand. That is, if we had another constant
vector source at a different orientation θ′, θ′ 6= θ, the multi-
wavelet would no longer be balanced for this source. The differ-
ence between balancing for vector data and balancing for scalar

data is that there is only one constant scalar source to within a
gain factor, but infinitely many constant vector sources, all with
different orientation angles. This vector balancing problem is
exacerbated when the data source is not constant.

Figs. 2 and 3 illustrate the vector balancing problem for the
real vector-valued data given in Fig. 1. For Figs. 2 and 3, we
perform a 3-scale VWT implemented via a multiwavelet, dis-
card all the wavelet coefficients, and reconstruct using the in-
verse VWT on just the baseband subband. We implement the
2D VWT in the usual separable fashion—a 1D VWT is taken
along each row of vectors and then along each column, yielding
three subbands of wavelet coefficients and one baseband of scal-
ing coefficients, repeating then on the baseband. We see that, re-
gardless of whether we use a non-balanced (Fig. 2) or balanced
(Fig. 3) multiwavelet for our VWT, we get extremely poor re-
sults for our compressor. Specifically, the baseband does not
consist of a low-resolution approximation of the original data as
we are led to expect from scalar multiresolution analysis. We
have observed similarly poor results for every multiwavelet we
have found in the literature.1 Since real-world signal-processing
algorithms often discard or otherwise modify wavelet coeffi-
cients, the practical implications of the vector balancing prob-
lem are clear.

To solve the vector balancing problem so as to construct
VWTs which are resilient to data loss amongst wavelet coef-
ficients, we propose the following constraint to the VWT-design
process. Realizing that the multiwavelet used for the VWT
needs to be balanced for all vectors lying on the unit circle,
we propose a new type of “balancing” that is insensitive to
the orientation angle of the vector data so that constant vector
sources, regardless of orientation, are reproduced by the “low-
pass” branch of the multifilter. Specifically, in terms of (22) and
(23), what is required is that all unit vectors are right eigenvec-
tors of H̃(z) and left eigenvectors of H(z) when z = 1. Such is
the case when

H(1) = H̃(1) = I, (24)

where I is the N ×N identity matrix. We call the imposition of
(24) omnidirectional balancing (OB) as it “balances” the multi-
wavelet for all orientations in a manner similar to the balancing
proposed in [5] for a single direction.

It is well known that, if hn and h̃n are the scaling filters for a
scalar biorthogonal wavelet system, then

∑

n

hn =
∑

n

h̃n =
√

2. (25)

The diagonal VWT discussed earlier in Sec. II-B having Hn =

diag(hn, . . . , hn) and H̃n = diag(h̃n, . . . , h̃n) thus clearly sat-
isfies (24). Diagonal VWTs constructed from any set of scalar
biorthogonal wavelets are thereby OB.

IV. CONSTRUCTION OF OBSA MULTIWAVELET FILTERS

To construct the primary and dual multiscaling functions for
our OBSA VWT, we impose the following set of equations: the

1Specifically, we have investigated the multiwavelets appearing in [3,5,9-12],
and only the multiwavelet based on the complex Daubechies filters of [5] does
not suffer from poor performance due to the balancing issue. However, the cas-
cade algorithm for this latter multiwavelet does not converge, so its performance
is not competitive either.
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PR condition (18), the OB condition (24), and the SA condition
[6,13],

Hn = SHKu+Kl−nS, H̃n = SH̃K̃u+K̃l−nS, (26)

where [Kl,Ku] and [K̃l, K̃u] are the intervals of support
of the FIR filters Hn and H̃n, respectively, and S =
diag(1,−1, . . . , (−1)N ). We occupy as many remaining de-
grees of freedom as possible by placing zeros at z = −1, cor-
responding to the technique of vanishing moments widely em-
ployed in scalar wavelet design. Specifically, to obtain p zeros
at z = −1, we have

dk

dzk
H(z)

∣∣
z=−1

= 0, (27)

for k = 0, 1, . . . , p.
After application of the above design steps, there are usually

several remaining degrees of freedom, and additional design cri-
teria are necessary to fully determine a solution. In [6], a filter-
optimization technique is proposed to occupy degrees of free-
dom in biorthogonal multiwavelet design. This approach calls
for the minimization of the deviation of the magnitude response
of the equivalent scalar filter from the ideal, or “brick-wall,”
scalar lowpass filter. However, the motivation in [6] is to de-
sign “good” multifilters for scalar signals; hence, this criterion
is not entirely suitable for vector-valued signals. Since it is un-
clear how to define an ideal vector lowpass filter, we adapt the
scalar approach of [6] to our vector design needs as follows.

The technique of [6] is to make the equivalent scalar magni-
tude response approach that of the ideal lowpass filter by mini-
mizing the objective function Elp,

Elp = α

∫ ω1

0

(1− |H(ω)|)2dω + (1− α)

∫ π

ω1

|H(ω)|2dω

+ α

∫ ω1

0

(1− |H̃(ω)|)2dω + (1− α)

∫ π

ω1

|H̃(ω)|2dω,

(28)

where α is a weighting parameter, and ω1 denotes the passband
of the ideal lowpass filter. In [6], |H(ω)| and |H̃(ω)| are the
magnitude responses of the equivalent scalar filters. For our vec-
tor design problem, we use

H(ω) =
1√
2

∑

n

Hne
jnω, (29)

while a variety of definitions exist for the matrix norm. It is
unclear which matrix norm is best from a theoretical perspec-
tive; however, our empirical observations indicate that all per-
form equally well. We thus define the matrix norm of H(ω) =[
Hi,j(ω)

]
N×N as

|H(ω)| = 1√
2




N∑

i=1

N∑

j=1

∣∣Hi,j(ω)
∣∣2



1/2

, (30)

with the division by
√

2 included so as to normalize the DC gain
to 1, since our OB condition gives H(ω)|ω=0 = I . Definitions
similar to (29) and (30) are used for |H̃(ω)|.

For the multiwavelets, we impose biorthogonality between
the multiwavelet and multiscaling functions (19), biorthogonal-
ity of the dual multiwavelets (20), and a SA condition similar to
(26). Similar to (28), we occupy any remaining the degrees of
freedom by minimizing a highpass objective function,

Ehp = α

∫ ω2

0

|G(ω)|2dω + (1− α)

∫ π

ω2

(1− |G(ω)|)2dω

+ α

∫ ω2

0

|G̃(ω)|2dω + (1− α)

∫ π

ω2

(1− |G̃(ω)|)2dω,

(31)

with ω2 denoting the stopband of the ideal highpass filter.
To date, we have attempted solutions for only the case of

N = 2, as the overwhelming majority of multiwavelet litera-
ture focuses on this multiplicity-2 case, and results are easily
visualized for 2D vectors. Additionally, we fix α = 1

2 , and
ω1 = ω2 = π

2 . We present a detailed outline of the solution
procedure in the appendix. We have constructed biorthogonal
OBSA multiwavelets with this procedure for lengths 7-5 and 5-
3; we show the scaling and wavelet functions for the OBSA7-5
filters in Figs. 4 and 5. Filter coefficients for both multiwavelets
can be found in the appendix.

V. EXPERIMENTAL RESULTS

Figs. 6 and 7 repeat the experiment of Figs. 2 and 3 for two
examples of omnidirectionally balanced VWTs, namely, a di-
agonal VWT derived from the popular 9-7 biorthogonal scalar
wavelet (CDF9-7) [14], and a non-diagonal VWT using our
OBSA7-5 multiwavelets. As can be seen, in contrast to Figs. 2
and 3, the basebands of OB VWTs do indeed provide a low-
resolution approximation to the original data. Additionally, the
mean squared error (MSE) between the reconstructed and orig-
inal vector fields for Figs. 6 and 7 are significantly smaller than
those for Figs. 2 and 3.

To investigate the performance of our OBSA VWTs in a
real signal-processing application, we built the following vector-
field compression system. Three scales of a 2D VWT for 2D
vectors is followed by vector quantization (VQ) of scaling and
wavelet coefficient vectors. We use the successive approxima-
tion VQ (SAVQ) of [15], which is a hybrid of gain-shape VQ
[16] and multistage VQ [16]. Finally, we finish with runlength
coding of all insignificant vectors (labeled as “zero” during each
approximation pass of the SAVQ coder) and arithmetic coding
with multiple contexts. In whole, the system, which produces
an embedded bitstream, is roughly an extension to vector data of
a coder we developed recently for scalar-valued oceanographic
imagery [17,18].

We have compared the performance of VWTs derived from
a number of orthogonal and biorthogonal multiwavelets of both
the non-balanced [3,12,13] and scalar-balanced [5,10] variety
to that of VWTs created from our OBSA multiwavelets. Rate-
distortion performance results for the above compression system
using the ocean-current data of Fig. 1 are shown in Fig. 8. We
see that our OBSA multiwavelets provide VWTs with perfor-
mance far superior to VWTs derived from other known multi-
wavelets. Additionally, in Fig. 9, we have compared the com-
pression performance of diagonal VWTs derived from popular
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orthonormal [19] and biorthogonal [14] scalar wavelets to that
of VWTs created from our OBSA multiwavelets in the above
compression system. From Fig. 9, we see that the compres-
sion performance of both of our OBSA VWTs is comparable to
that of a diagonal VWT derived from the CDF9-7 biorthogonal
wavelet [14], long popular for compression applications. We
have repeated these experiments for a number of other vector-
valued datasets from a variety of other applications. For ex-
ample, Fig. 11 repeats the experiments for sea-wind data as il-
lustrated in Fig. 10, and Figs. 13 and 15 compare VWT per-
formance on the two optical-flow [21] fields shown in Figs. 12
and 14, respectively. We see that both of our OBSA VWTs of-
fer performance comparable to the diagonal transforms for the
sea-winds data, while our OBSA5-3 VWT outperforms the di-
agonal transforms for both optical-flow datasets. Thus, we con-
clude that, although the compression performance of our VWTs
is somewhat mixed and dependent on the application producing
the vector fields, our nondiagonal OBSA VWTs do have the po-
tential to outperform diagonal VWTs based on popular scalar
wavelets.

VI. CONCLUSIONS

In this paper, we have revealed that nearly all existing mul-
tiwavelets perform poorly when used to implement VWTs. To
remedy this situation, we have proposed the incorporation of
an additional criterion in the multiwavelet-design procedure that
results in multiwavelets that are balanced in an omnidirectional
sense. Using this criterion, we design a family of multiplicity-
2 OBSA multiwavelets that substantially outperforms existing
multiwavelets when used for VWTs in a simple compression
system for 2D vectors. Additionally, we show that the straight-
forward approach to transforming vector data, namely the inde-
pendent application of scalar transforms in a component-wise
fashion, is equivalent to an OB VWT with coefficient matri-
ces constrained to be diagonal. In empirical observations, we
find that not only does our family of OBSA multiwavelets pro-
vide the best compression performance for VWTs derived from
known multiwavelets, it also offers performance comparable to
or exceeding that of diagonal OB VWTs based on popular scalar
wavelets.

In the future, we hope to incorporate into our OBSA de-
sign procedure higher-order balancing constraints akin to those
developed in [20] for scalar expansion. Specifically, we pro-
pose considering samplings of signals of the form x̄(t) =

x(t)
[
cos θ sin θ

]T
, where x(t) is some (scalar-valued) poly-

nomial of degree p, and θ is some arbitrary orientation angle,
θ ∈ [0, 2π]. In the order-1 omnidirectional balancing case,
p = 0, x(t) is equal to some scalar constant, and we have the
constant vector field we considered in Sec. III-B. For more gen-
eral order-p omnidirectional balancing, we would want vector-
valued polynomial signals of degree p − 1 and less to be pre-
served to within a gain factor by both the lowpass analysis and
synthesis operations. We anticipate that factorizations of the
H(z) and H̃(z) matrices may provide additional design con-
straints in a manner similar to those used in [20], resulting in
even greater vector-field compression performance than what
we have demonstrated here.
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APPENDIX

To find OBSA filter coefficients, we use a combination of
symbolic solution via Matlab’s symbolic toolbox and numeri-
cal solution via a gradient descent. Full details of the solution
procedure can be found in [22].

Step 1: For given filter lengths, we define coefficient matrices
with matrix elements as symbolic variables; the SA condition
(26) greatly reduces the number of variables.
Step 2: We impose the PR condition (18), the OB condition
(24), and the vanishing-moments conditions (27) and use Mat-
lab’s symbolic solve function to obtain symbolic solutions.
Multiple solutions involving undetermined variables and com-
plex numbers are possible. For example, in solving for our
biorthogonal OBSA5-3 filters, we eliminate from further con-
sideration all complex-valued solutions as well as solutions that
lead to a purely diagonal structure. We are left with several non-
diagonal solutions that differ only in a change of sign. Arbitrar-
ily choosing one, we have

H−2 =
1√
2

[
1
8

3
64γ

γ 1
8

]
, H−1 =

1√
2

[
1
2

3
32γ

2γ 1
2

]
,

H0 =
1√
2

[
3
4 0

0 3
4

]
, H1 = SH−1S, H2 = SH−2S,

H̃−1 =
1√
2

[
1
2 4γ

3
16γ

1
2

]
, H̃0 =

1√
2
I, H̃1 = SH̃−1S.

(32)
Step 3: We use a gradient descent to numerically find values
of undetermined variables so as to locally minimize the ideal-
lowpass objective function (28). For our OBSA5-3 solution, we
obtain γ =

√
3

8 .

Step 4: To solve for Gn and G̃n filters, we again use Matlab’s
symbolic tools. SA conditions similar to (26) reduce the num-
ber of variables, and the biorthogonality equations (19), (20) are
solved for symbolic solutions. In the case of our OBSA5-3 filter,
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we arrive at

G0 =
1√
2

[
0.10826939409537

β
−3
16β

−3
16ζ

0.10823695928027
ζ

]
,

G1 =
1√
2

[−0.21653878819074
β 0

0 −0.21647391856054
ζ

]
,

G̃−1 =
1√
2

[
−0.57726378282811β β

ζ −0.57743676850863ζ

]
,

G̃0 =
1√
2

[
2.30905513131246β −2β

−2ζ 2.30974707403452ζ

]
,

G̃1 =
1√
2

[
−3.46358269696868β 0

0 −3.46462061105178ζ

]
,

G2 = SG0S, G̃2 = SG̃0S, G̃3 = SG̃−1S. (33)

Step 5: We use a gradient descent to numerically find values
of undetermined variables so as to locally minimize the ideal-
highpass objective function (31). For our OBSA5-3 solution,
we find β = 0.26713242893612 and ζ = 0.26712267687476.

Using the above procedure, we also obtained OBSA filters
of length 7/5, with vanishing moments of order (3, 1). In the
symbolic solution of step 2, we arrive at

H−3 =
1√
2

[
9+32λ

32(32λ−1)
48λ+512λ2+3
512(32λ−1)ξ

ξ λ

]
,

H−2 =
1√
2

[
7+96λ

16(32λ−1)
48λ+512λ2+3
128(32λ−1)ξ

4ξ 2λ+ 1
8

]
,

H−1 =
1√
2

[
5(−5+96λ)
32(32λ−1)

5(48λ+512λ2+3)
512(32λ−1)ξ

5ξ −λ+ 1
2

]
,

H0 =
1√
2

[
5(−3+32λ)
8(32λ−1) 0

0 −4λ+ 3
4

]
,

H̃−2 =
1√
2

[
4λ 4ξ

48λ+512λ2+3
128(32λ−1)ξ

9+32λ
8(32λ−1)

]
,

H̃−1 =
1√
2

[ 1
2 8ξ

48λ+512λ2+3
64(32λ−1)ξ

1
2

]
,

H̃0 =
1√
2

[
1− 8λ 0

0 96λ−13
4(32λ−1)

]
,

H1 = SH−1S, H2 = SH−2S, H3 = SH−3S,

H̃1 = SH̃−1S, H̃2 = SH̃−2S, (34)

while in the numerical optimization of step 3, we obtain ξ =
0.10519112376824 and λ = 0.13007432508989. For the high-

pass filters, the symbolic solution of step 4 yields

G−1 =
1√
2

[
0.05472555812358

ρ
−0.04423654423260

ρ

−0.04423654423260
τ

0.05470324933616
τ

]
,

G0 =
1√
2

[−0.05259066122941
ρ

0.08847308846520
ρ

0.08847308846520
τ

−0.05257176749455
τ

]
,

G1 =
1√
2

[−0.00426979378833
ρ 0

0 −0.00426296368321
τ

]
,

G̃−2 =
1√
2

[
−1.23660765742734ρ ρ

τ −1.23711196416754τ

]
,

G̃−1 =
1√
2

[
3.66163923915863ρ −4ρ

−4τ 3.66307495957489τ

]
,

G̃0 =
1√
2

[
−3.51708803978847ρ 5ρ

5τ −3.51829216079169τ

]
,

G̃1 =
1√
2

[
2.18411291611436ρ 0

0 2.18465833076869τ

]
,

G2 = SG0S, G3 = SG−1S,

G̃2 = SG̃0S, G̃3 = SG̃−1S, G̃4 = SG̃−2S, (35)

and the numeric optimization of step 5 gives us ρ =
0.12552236275346 and τ = 0.12549181109414.

REFERENCES

[1] W. Li, “On vector transformation,” IEEE Transactions on Signal Process-
ing, vol. 41, no. 11, pp. 3114–3126, November 1993.

[2] X.-G. Xia and B. W. Suter, “Vector-valued wavelets and vector filter
banks,” IEEE Transactions on Signal Processing, vol. 44, no. 3, pp. 508–
518, March 1996.

[3] J. S. Geronimo, D. P. Hardin, and P. R. Massopust, “Fractal functions
and wavelet expansions based on several scaling functions,” Journal of
Approximation Theory, vol. 78, no. 3, pp. 373–401, September 1994.

[4] X.-G. Xia, J. S. Geronimo, D. P. Hardin, and B. W. Suter, “Design of pre-
filters for discrete multiwavelet transforms,” IEEE Transactions on Signal
Processing, vol. 44, no. 1, pp. 25–35, January 1996.

[5] J. Lebrun and M. Vetterli, “Balanced multiwavelets theory and design,”
IEEE Transactions on Signal Processing, vol. 46, no. 4, pp. 1119–1125,
April 1998.

[6] H. H. Tan, L.-X. Shen, and J. Y. Tham, “New biorthogonal mulitwavelets
for image compression,” Signal Processing, vol. 79, no. 1, pp. 45–65,
November 1999.

[7] S. G. Mallat, “A theory for multiresolution signal decomposition: The
wavelet representation,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 11, no. 7, pp. 674–693, July 1989.

[8] G. Strang and V. Strela, “Short wavelets and matrix dilation equations,”
IEEE Transactions on Signal Processing, vol. 43, no. 1, pp. 108–115, Jan-
uary 1995.

[9] G. M. Davis, V. Strela, and R. Turcajová, “Multiwavelet construction via
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Fig. 1. Original data, a 2D field of 2D vectors representing ocean currents as
measured on the surface of the Pacific Ocean.
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Fig. 2. Reconstruction from the baseband of a VWT implemented with the
Chui-Lian length-3 multiwavelet [13], MSE = 0.0334.
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Fig. 3. Reconstruction from the baseband of a VWT implemented with the
Lebrun-Vetterli balanced length-3 multiwavelet [5], MSE = 0.0394.
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Fig. 4. The primary scaling and wavelet functions of our OBSA7-5 multi-
wavelets.
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Fig. 5. The dual scaling and wavelet functions of our OBSA7-5 multiwavelets.
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Fig. 6. Reconstruction from the baseband of a diagonal VWT implemented with
scalar CDF9-7 biorthogonal wavelets [14], MSE = 0.0076.
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Fig. 7. Reconstruction from the baseband of a VWT implemented with our
OBSA7-5 biorthogonal multiwavelets, MSE = 0.0082.
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Fig. 8. Compression performance for the ocean-current data of Fig. 1 for VWTs
derived from non-balanced multiwavelets (CL3 [13], GHM [3], Strela2
[12]), scalar-balanced multiwavelets (BAT3 [5], BAT7 [5], Sel8 [10]), and
our OBSA multiwavelets.
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Fig. 9. Compression performance for the ocean-current data of Fig. 1 for VWTs
from our OBSA multiwavelets, a diagonal VWT from a scalar orthonormal
wavelet (D6 [19]), and a diagonal VWT from a scalar biorthogonal wavelet
(CDF9-7 [14]).
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Fig. 10. A 2D field of 2D vectors representing ocean-surface winds derived
from scatterometer observations from space.

1 2 3 4 5 6 7 8
10

−2

10
−1

10
0

10
1

10
2

Rate (bits/vector)

M
S

E

Diagonal CDF9−7
Diagonal D6    
OBSA5−3        
OBSA7−5        
CL3            
BAT3           

Fig. 11. Compression performance for the sea-wind data of Fig. 10 for VWTs
from our OBSA multiwavelets, a diagonal VWT from a scalar orthonor-
mal wavelet (D6 [19]), a diagonal VWT from a scalar biorthogonal wavelet
(CDF9-7 [14]), a VWT from a non-balanced multiwavelet (CL3 [13]), and
a VWT from a scalar-balanced multiwavelet (BAT3 [5]).

Fig. 12. A 2D field of 2D vectors representing optical flow [21] in a computer-
generated rendering of a rotating sphere.
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Fig. 13. Compression performance for the optical-flow data of Fig. 12 for the
VWTs used in Fig. 11.

Fig. 14. A 2D field of 2D vectors representing optical flow in a computer-
generated rendering of camera zoom in an office.

1 2 3 4 5 6 7 8
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Rate (bits/vector)

M
S

E
(lo

g1
0)

Diagonal CDF9−7
Diagonal D6
OBSA5−3
OBSA7−5
CL3
BAT3

Fig. 15. Compression performance for the optical-flow data of Fig. 14 for the
VWTs used in Fig. 11.
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