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Abstract

In this paper we develop a filter design framework emphasizing feature preservation. We are particularly
interested in multiscale filters that can be used in wavelet transforms for large datasets generated by com-
putational fluid dynamics simulations. High-fidelity wavelet transforms can facilitate the accurate mining of
scientific data. However, it is important that the salient characteristics of the original features be preserved
under the transformation. Our effort is different from classical filter design approaches which focus solely
on performance in the frequency domain. In particular, we present a set of filter design axioms that ensure
certain feature characteristics are preserved and that the resulting filter corresponds to a wavelet transform
admitting in-place implementation. Three standard filters, corresponding to the Haar, linear, and cubic
lifting wavelets, are shown to violate at least one of the criteria related to feature preservation. We also
demonstrate how the axioms can be used to design a simple feature-centric filter. Results are included that
demonstrate the feature-preservation characteristics of each filter.

1. Introduction

Large-scale computational fluid dynamics simulations of physical phenomena produce data of unprecedented

size (terabyte and petabyte range). Unfortunately, development of appropriate data management and vi-
sualization techniques has not kept pace with the growth in size and complexity of such datasets. One
paradigm of large-scale visualization is to browse regions containing significant features of the dataset while
accessing only the data needed to reconstruct these regions. Such an effort is akin to mining or discovering
spatially and temporally correlated data. The cornerstone of an approach of this type is a representational
scheme that facilitates ranked access to macroscopic features in the dataset [1, 2, 3]. In this approach,
a feature-detection algorithm is used to identify and rank contextually significant features directly in the
wavelet domain.

In [1, 2, 3], the linear lifting scheme [4] was used for compressing components of a vector field. The work
reported here grew out of our efforts to analyze the implementation of the lifting scheme and design new
transforms that more ardently preserve features in discrete flow fields. The rate-distortion characteristics of
many wavelet transforms do not bode well for feature preservation [3]. However, it was unclear as to what
distortions the wavelet transform wrought on the data. It is therefore useful to evaluate the effect of the
wavelet transform in terms of processes that alter the “shape” of the data, i.e., features. Additionally, for
very large datasets it is necessary that data-mining or feature detection be performed in the compressed
domain. In this context, it is essential that the wavelet transform preserve significant features in the data
set.

It is well known that wavelets can efficiently approximate smooth data [5] and produce efficient com-
pression schemes. To suitably preserve edges in scalar image fields, several linear and non-linear or data-
dependent schemes have been proposed [6, 7, 8, 9]. In particular, Zhou [10] utilizes Essentially Non-
Oscillatory (ENO) reconstructions [11] of the data so that fewer high frequency coefficients are created.



Techniques employed in the study of partial differential equations (PDEs) have been extensively utilized
to define the multiscale behavior of feature detection algorithms [12, 13, 14, 15] for images. Typically,
the time variable in an evolutionary PDE is taken to represent a scale parameter. In vision and image
processing applications, edges can be thought of as discontinuities. These techniques are used to enhance
interregion boundaries and smooth intraregion variations. It should be noted that linear PDEs are not
completely successful in enhancing boundaries while eliminating noise. Discrete models of the diffusion
equation with a nonlinear conductance based on gradient information have proven to be particularly useful
for these applications [12, 15].

In this paper we define a framework for the analysis and design of of multiscale filters through a variational
characterization and a multiscale PDE formulation. Given the need for efficient compression and processing,
we consider only linear transforms at this time. We suggest that the methods proposed here can be used in
conjunction with frequency-based methods to design multiscale linear wavelet filters. A result of our three-
fold characterization is a set of axioms that can be used to analyze and eventually design filters. Filters that
satisfy our axioms will be more likely to preserve features in a linear wavelet space and enable high-fidelity
mining of scientific datasets. Additionally, we seek to design filters corresponding to wavelets that can be
implemented as a sequence of lifting steps [4].

Our axiomatic filter design resembles the work of Weickert et al. [15] as well as that of Alvarez et al. [16].
Although these efforts yield similar sets of axioms, their frameworks are different since the domain of interest
is limited to images populated with strong discontinuities such as edges. In our application, however, not
all regions of strong gradients correspond to discontinuities. In fact, features with strong gradients such as
expansions and boundary layers should not be treated as discontinuities.

Our paper is structured as follows. We first describe the general linear filter. Next, we formalize our
ideas regarding feature preservation. We then present a set of filter design axioms. Representative forms
of the lifting scheme are analyzed using our framework, including a new scheme that satisfies our criteria.
Suitable examples are provided to support our analysis and claims. We stress that our current efforts should
be considered as a “work in progress.”

2. General Linear Filter
We begin by defining a discrete, scalar quantity s;; on an equally-spaced mesh z;; = {Az; for [ =0, ..., 2N
with /V being a positive integer. We seek a multiscale approximation to s;; on a second equally-spaced mesh,
zj_1y = IAzx;_y for I = 0,..., N with Az;_; = 2Az;, that preserves certain characteristics of the original
scalar field. We denote this approximation as s;_1 ;.

We now consider a general linear filter of the form

+n

Sj—Ll = D, akSj 2 (1)

k=—m

where m and n are positive integers and the a; are constants that are independent of the data. The ay are
composite coefficients that represent the combined effects of a wavelet transform implemented as a filter.
The discrete moments of the filter are given by

+n
Qg = E kqak . (2)

k=—m

After the filter is applied, the data is subsampled to define the space x;_1.
It can be shown [17] that the application of the linear filter defined in (1) can be thought of as the
evolution of the solution to the partial differential equation
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with the initial data given as the original discrete data s;; provided >, ax = 1. Note that the evolution of
the scalar s in (3) depends explicitly on the sampling rate Az;. In this context, filter design can be thought
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of as the design of a discrete approximation to this PDE which more naturally relates to preservation of
spatial features than a frequency-based approach. A similar spatial filter analysis was also described in [18]
where the filter performance was described in terms of spatial criteria by examining the non-zero discrete
moments, i.e., the oy in (2).

The frequency response or amplification factor of the filter is given by

+n

G = Y ape™’ (4)

k=—m

where the amplification factor represents the response for the frequency 3. The magnitude of G(8) measures
the amplitude of a unit Fourier coefficient upon application of the filter and the phase of G(3) measures the
phase shift that occurs after application of the filter.

3. Feature Preservation

It is now appropriate to define what we mean by feature preservation. In this context, feature preservation
implies that the “location”, “shape”, and “strength” of features are unchanged after the application of the
general filter (1). Of course, differences naturally occur due to the change in resolution between z;; and
zj_1,. We now state these ideas in more concrete terms.

e The “location” of a feature is simply its position within the domain. As discussed in [17, 19], odd order
derivative terms in the evolutionary PDE correspond to a convection or translation of features in the
domain. If the filter is symmetric, ay = a_g for all &, the coefficients multiplying the convective terms
are identically zero and no translation of the data occurs.

e The “shape” of a feature can be described in terms of regions of monotone variation in the data.
For the “shape” to be preserved, the linear filter should not introduce new extrema. This condition
is expressed in [12] as the “causality condition.” This condition can be imposed by ensuring that
the linear transform is Total Variation Diminishing (TVD) after the data is subsampled [19], i.e.,
ar + apq1 > 0 for all k provided ), ap = 1.

e The “strength” of a feature can be described in terms of the changes in the data. For the strength
to be preserved, the linear filter should not accentuate or diminish local extrema. This condition
can be related to the frequency response (4) of the filter [19]. Our evolutionary PDE framework (3)
characterizes changes in feature strength in terms of the even order derivative terms which represent
the diffusive tendencies of the filter.

4. Filter Design Axioms

Having defined feature preservation, we now enumerate a list of filter design axioms. We want to formulate
a set of requirements on the coefficients ay that can guide the design of a wavelet transform associated with
the coefficients ag in addition to preserving features. We define the restricted transfer operator T as follows:
if the length of the convolution product of the sequence of coefficients ay with itself is NV, then T is the
(N —2) x (N = 2) matrix obtained from double shifts of this convolution product, times 2 (see [20]). Let
us impose the following requirements on the coefficients ay:

(R1) > ar=1

k

(R2) Z(—l)kkjak =0, for j=0,1,...,p— 1, and some p > 1
k
(R3) the restricted transfer operator T' has one eigenvalue A = 1, and

all other eigenvalues have |A| < 1
(R4) ap + ax41 > 0 for all k
(R5) ap =a_y for all k



(R6) if a_, is the first nonzero coefficient, then the polynomials a_,+
a_pny2Z + a_n+4z2 + ... and a_pny1 +A_p432 + a_n+5z2 + ... are
relatively prime.

(RT) between all filters with the desired properties, the filter given by the

coefficients a; minimizes the L2 distance to the sinc filter.
(5)

Axioms (R1), (R4), and (Rb) are related to the feature preservation properties of the filter. Axiom (R2)
dictates the performance of the frequency response at § = w. Axioms (R3) and (R6) ensure that the
proposed filter is the low pass filter of a wavelet transform which can be implemented as a series of lifting
steps. Axiom (R7) minimizes blurring and aliasing. Our three-fold framework provides for a complete
specification of coefficients.

Theorem. Requirements (R1)-(R7) are necessary and sufficient conditions for the following properties
to hold:

(a) (Convergence of the cascade algorithm, see [20])
The iteration ¢+ (t) = Dk 2a;, ¢ (2t — k), where ¢(©) is a box function,
converges in L?.
(b) (Accuracy of approzimation of order p)
The error estimate for a function f(t) of class C? at scale At =277 is of
the form C(At)?|f®)(t)].
(¢) (Total variation diminishing from finer to coarser scales)
TV(s5i-1) < TV (s,).
(d) (Zero phase shift from finer to coarser scale)
In the evolutionary PDE (3), all coefficients multiplying even order derivatives are zero.
(e) (Lifting scheme implementation, see [21])
There exists complementary high-pass filter, and the associated wavelet
transform admits in-place implementation using the lifting scheme.
(f) (Average grey level invariance)
The average of the data is unchanged when passing from finer to coarser scales.
(g) (Preservation of low frequencies)
The moment of order 0 is 1, and the moment of order 1 is 0.
(h) (Optimality)
Between all filters with the desired properties, the filter given by the cocfficients ay

minimizes the L? distance in the frequency domain to the ideal brick wall filter.

Properties (a) — (h) are related to (R1) — (RT) as follows: (a) is equivalent to (R3), () is equivalent to (R2),
(¢) is implied by (R1) and (R4), (d) is implied by (Rb), (e) is equivalent to (R6), (f) is equivalent to (R1),
(g) is implied by (R1) and (Rb), and (k) is equivalent to (RT).

4.1 Examples

Notice that requirements (R1) — (RT) are in terms of the coefficients aj. Therefore, it is possible to
use all or some of these requirements, together with conditions derived from the properties of the data with
which we work, in order to design wavelets that are optimal for feature preservation.

For example, suppose we are looking for the shortest filter that, for p = 1, satisfies requirements
(R1) — (R6). Due to (Rb) the length of the filter will have to be odd. Due to (R2) the length of the filter
cannot be 1, so it has to be at least 3. Then, by using (R1) and (R2) we get a_1 = 1/4, ag = 1/2, a1 = 1/4.
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If we now check (R3), (R4), and (R6) we will notice that they also hold for this choice of coefficients. Let
us illustrate this by looking at condition (R3). The convolution product of (1/4, 1/2,1/4) with itself is
(1/16, 1/4, 3/8, 1/4, 1/16), N = 5, and the corresponding restricted transfer operator has eigenvalues
1, 1/2, 1/4. Therefore the TVD filter coefficients (1/4, 1/2, 1/4) are the only solution to (R1) — (R6) for
filter lengths less than 5.

As another example, suppose we are looking for filters of length 5 that satisfy (R1)— (R6) for the largest
value of p possible. By using (R1), (R2), and (R5) we find that there is no solution for p = 5, and for
p = 4 there is an unique solution a_y = 1/16, a_1; = 1/4, ao = 3/8, a1 = 1/4, ay = 1/16. These filter
coefficients are the optimal solution to (R1) — (R6) if we are looking at filters of length less than 7 and we
want to maximize the accuracy of approximation for smooth input. If we relax the condition on p, or if
we look at filters of length 7 or more, there will be room for a design strategy that allows us to approach
the ideal brick wall filter while satisfying other functional and variational criteria. Additionally, the ideal
brick wall filter (a sine function in the spatial domain) will not satisfy the TVD condition. Thus, any filter
design strategy will seek a compromise between the ideal frequency behavior and the feature preservation
properties of TVD filters. Given that this is a work-in-progress, we use these axioms to analyze existing
wavelet filtering schemes rather than design new ones. We show our results in the next section.

5. Preliminary Results

We now demonstrate some of the concepts presented in the previous sections. The lifting scheme consists
of three steps: split, predict, and update [4]. By combining the three steps, a single expression in the form
of (1) can be derived for the updated values. Three basic forms of lifting described in [4] can be defined
using the coefficients given in Table 1. We also consider the simple (1/4, 1/2, 1/4) TVD filter derived in
the previous section. By inspection, all four schemes given in Table 1 satisfy the partition of unity (R1).
Of the four schemes considered here, only the versions using the Haar and TVD wavelets satisfy the TVD
constraint (R4).

The implications of the failure of the different filters to satisfy the axioms given in Section 4 are inves-
tigated by applying the schemes to the data used in [10]. We have assumed periodicity so that boundary
effects can be ignored. Figure 1 shows three levels of transform with the original data consisting of 128 dis-
crete, equally-spaced values. Here, one application of the transform consists of applying the filter (1) using
the selected coefficient values and then downsampling the data. From Figure 1, it is apparent that only
results obtained using Haar lifting and TVD lifting may be characterized as TVD. New extrema (wiggles)
are created by both linear and cubic lifting for the two square wave signals. This behavior is caused by the
violation of (R4) and is also observed to a much lesser degree for the triangle wave. The lack of symmetry
in the results for the Haar wavelet is caused by the violation of (Rb). Since the filter is not symmetric, the
coefficients of the convective terms in the evolutionary PDE are nonzero and the square wave translates to
the left. Notice there is some asymmetry for the linear, cubic, and TVD filters for the middle square wave.
This behavior is caused by the fact that the the wavelength of this feature is of insufficient length to be
captured symmetrically by the second and third downsamplings. The dissipative nature of the symmeteric
TVD filter is observed in the reduction in amplitudes of the triangle wave and the middle square wave and
represents the primary undesirable characteristic of this filter. This behavior is caused by the fact that the
frequency response of the (1/4, 1/2, 1/4) filter departs from the ideal brick wall filter (RT). Our long-term
goal is to develop linear filters that improve upon this behavior.

6. Conclusions

In this paper we defined a framework for the analysis and design of multiscale filters through a variational
characterization and a multiscale PDE formulation. Included in this framework are a set of axioms that
can be used to design filters that preserve certain characteristics of the data—namely the position, shape,
and strength of features. We showed that three standard forms of the lifting scheme violate at least one
of the criteria and that data filtered using these schemes exhibited undesirable characteristics. We further
demonstrated that the simple (1/4, 1/2, 1/4) filter satisfies these criteria and shows potential as a component
of a linear TVD wavelet. We suggest that the methods proposed here can be used in conjunction with
frequency-based methods to design multiscale linear wavelet filters. We plan to utilize these techniques to
develop advanced wavelets with feature-preserving qualities.
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Table 1: Coefficient values for selected versions of the lifting scheme
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Figure 1: Three levels of lifting for the data of [10]-Haar, linear, cubic, and symmetric TVD



