![]() |
![]() |
|
L. Hua and J. E. Fowler, “Wavelet-Based Coding of Time-Varying Vector Fields of Ocean-Surface Winds,” IEEE Transactions on Geoscience and Remote Sensing, 2004, to appear.
- Abstract:
Geoscience applications often produce sizable datasets which are vector-valued and increasingly in need of compression algorithms to reduce storage and transmission burdens, particularly when the data is time-varying. In this paper, several advanced interframe-compression techniques are extended from the traditional realm of natural video to the coding of time-varying vector fields. Although similar to natural video in some respects, time-varying vector-field sequences often possess complex temporal evolution of vector-valued features that are important to the analytic quality of the data yet defy the simple motion models widely employed for natural video. To improve coding performance, motion compensation with reduced resolution is proposed such that motion compensation is applied only to features with low spatial resolution while high-resolution information, for which the motion model fails, is intraframe coded with no temporal decorrelation. In empirical results on datasets of ocean-surface winds, this reduced-resolution motion-compensation technique results in significant performance improvement.
- Text:
![]()
© 2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.